Stabilizing nanoparticles in the intensity minimum: feedback levitation on an inverted potential

Author(s)
Salambô Dago, J. Rieser, M. A. Ciampini, V. Mlynář, A. Kugi, M. Aspelmeyer, A. Deutschmann-Olek, N. Kiesel
Abstract

We demonstrate the stable trapping of a levitated nanoparticle at the apex of an inverted potential using a combination of optical readout and electrostatic control. The feedback levitation on an inverted potential (FLIP) method stabilizes the particle at an intensity minimum. By using a Kalman-filter-based linear-quadratic-Gaussian (LQG) control method, we confine a particle to within σx = 9 ± 0.5 nm of the potential maximum at an effective temperature of 16(1) K in a room-temperature environment. Despite drifts in the absolute position of the potential maximum, we can keep the nanoparticle at the apex by estimating the drift from the particle dynamics using the Kalman filter. Our approach may enable new levitation-based sensing schemes with enhanced bandwidth. It also paves the way for optical levitation at zero intensity of an optical potential, which alleviates decoherence effects due to material-dependent absorption and is hence relevant for macroscopic quantum experiments.

Organisation(s)
Quantum Optics, Quantum Nanophysics and Quantum Information
External organisation(s)
Technische Universität Wien, Austrian Institute of Technology, Österreichische Akademie der Wissenschaften (ÖAW)
Journal
Optics Express
Volume
32
Pages
45133-45141
No. of pages
9
ISSN
1094-4087
DOI
https://doi.org/10.48550/arXiv.2410.17253
Publication date
12-2024
Peer reviewed
Yes
Austrian Fields of Science 2012
103021 Optics, 103025 Quantum mechanics
ASJC Scopus subject areas
Atomic and Molecular Physics, and Optics
Portal url
https://ucrisportal.univie.ac.at/en/publications/4bdffa07-a23f-4a55-a866-4007b5cefa1a