Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene

Author(s)
Jani Kotakoski, Christian Brand, Yigal Lilach, Ori Cheshnovsky, Clemens Mangler, Markus Arndt, Jannik C. Meyer
Abstract

Graphene has many claims to fame: it is the thinnest possible membrane, it has unique electronic and excellent mechanical properties, and it provides the perfect model structure for studying materials science at the atomic level. However, for many practical studies and applications the ordered hexagon arrangement of carbon atoms in graphene is not directly suitable. Here, we show that the atoms can be locally either removed or rearranged into a random pattern of polygons using a focused ion beam (FIB). The atomic structure of the disordered regions is confirmed with atomic-resolution scanning transmission electron microscopy images. These structural modifications can be made on macroscopic scales with a spatial resolution determined only by the size of the ion beam. With just one processing step, three types of structures can be defined within a graphene layer: chemically inert graphene, chemically active amorphous 2D carbon, and empty areas. This, along with the changes in properties, gives promise that FIB patterning of graphene will open the way for creating all-carbon heterostructures to be used in fields ranging from nanoelectronics and chemical sensing to composite materials.

Organisation(s)
Physics of Nanostructured Materials, Quantum Optics, Quantum Nanophysics and Quantum Information
External organisation(s)
Tel Aviv University
Journal
Nano Letters: a journal dedicated to nanoscience and nanotechnology
Volume
15
Pages
5944-5949
No. of pages
6
ISSN
1530-6984
DOI
https://doi.org/10.1021/acs.nanolett.5b02063
Publication date
09-2015
Peer reviewed
Yes
Austrian Fields of Science 2012
103018 Materials physics, 210004 Nanomaterials
Keywords
ASJC Scopus subject areas
Condensed Matter Physics, Mechanical Engineering, Bioengineering, General Chemistry, General Materials Science
Portal url
https://ucrisportal.univie.ac.at/en/publications/7b52b959-8576-4fcc-81ee-4ff5a50888bc